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Abstract Transmission pathways have fundamental influence
on microbial symbiont persistence and evolution. For example,
the core gut microbiome of honey bees is transmitted socially
and via hive surfaces, but some non-core bacteria associated
with honey bees are also found on flowers, and these bacteria
may therefore be transmitted indirectly between bees via
flowers. Here, we test whether multiple flower and wild
megachilid bee species share microbes, which would suggest
that flowers may act as hubs of microbial transmission. We
sampled the microbiomes of flowers (either bagged to exclude
bees or open to allow bee visitation), adults, and larvae of seven
megachilid bee species and their pollen provisions. We found a
Lactobacillus operational taxonomic unit (OTU) in all samples
but in the highest relative and absolute abundances in adult and
larval bee guts and pollen provisions. The presence of the same
bacterial types in open and bagged flowers, pollen provisions,
and bees supports the hypothesis that flowers act as hubs of
transmission of these bacteria between bees. The presence of

bee-associated bacteria in flowers that have not been visited by
bees suggests that these bacteria may also be transmitted to
flowers via plant surfaces, the air, or minute insect vectors such
as thrips. Phylogenetic analyses of nearly full-length 16S rRNA
gene sequences indicated that the Lactobacillus OTU dominat-
ing in flower- andmegachilid-associatedmicrobiomes is mono-
phyletic, and we propose the name Lactobacillus micheneri sp.
nov. for this bacterium.

Keywords Lactobacillus micheneri .Gilliamella .
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Introduction

How microbes assemble into microbiomes is a fundamental
question in microbial ecology. For mammals and plants, en-
vironmental factors appear to be the most important, although
there is gathering evidence that host genetics can influence
microbiome structure [1]. In hominids, for example,
Bifidobactertium adolescentis and several Bacteroidaceae
species cospeciated with their hosts, indicating an ancient,
coevolving relationship between host and at least some mem-
bers of the gut microbiome [2]. Microbiome composition for
many hosts may be most influenced by environmental factors
such as diet or geography, yet heritability and vertical trans-
mission may still play a role [1].

Insects and other invertebrates serve as important models
for microbiome and symbiosis research [3, 4]. Insect
microbiomes usually exhibit lower diversity than do verte-
brate microbiomes, yet they exhibit a continuum of transmis-
sion modes [3]. Beneficial microbes are often host-specific
and maternally inherited, as maternal inheritance typically
couples the evolutionary interests of host and symbiont,
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facilitating the evolution of cooperative (beneficial) host-
microbiome interactions [5]. Wolbachia and other sex ratio
distorters are fascinating exceptions, in that they are vertically
transmitted but are reproductive manipulators instead of mu-
tualists [6]. Another form of transmission that is akin to ma-
ternal inheritance is social transmission, which occurs be-
tween colony mates [3] and sexual partners [7] and can sim-
ilarly couple the fates of the host and symbiont. A third mode
of transmission is environmental acquisition of pathogenic,
commensal, and beneficial microbes through contact with en-
vironmental microbes or via food. The broad-headed bug
Riptortus clavatus, for example, acquires its beneficial
Burkholderia symbionts from the soil [8].

Honey bees and bumble bees harbor distinct microbes that
are shared via social transmission [9, 10] and, in the case of
honey bees, contact with hive surfaces [11]. The Bcore^ gut
microbiota of honey bees and bumble bees appears to be
mostly host-specific, while other social and solitary bee spe-
cies appear to harbor mostly environmental bacteria [12]. In
our previous work, we found that halictid bees, a solitary apid,
and a megachilid bee associate with bacteria that have also
been isolated from flowers or have close bacterial relatives
that have been isolated from flowers [13–16]. For example,
in wild bees, we have found a bacterium that is most closely
related to Lactobacillus kunkeei. Lactobacillus kunkeei is
found in the hive materials and larval guts of honey bees
and has been isolated from flowers visited by honey bees
[17]. However, Lactobacillus kunkeei strains isolated from
flowers do not grow well in royal jelly, whereas strains isolat-
ed from honey bee larvae do, suggesting that some strains may
be adapted to the honey bee niche [18]. Through deep se-
quencing of 16S rRNA gene amplicons, we have found con-
siderable strain diversity in relatives of L. kunkeei that associ-
ate with wild bees [13, 15, 19] but the functional differences
within this cryptic diversity is not understood.

Here, we address several unanswered questions regarding
microbes found in association with wild megachilid bees and
the flowers that they visit. First, we determine whether flowers
and megachilid bees harbor the same microbes by sampling
multiple megachilid bee species and multiple flowering plant
species from two widely separated communities in central
Texas. To determine whether the dominant Lactobacillus
OTU from these samples is abundant in flowers, bee-
associated samples, or both, we used quantitative PCR to
measure absolute abundance. To determine if flowers that
have not been visited by bees harbor the same microbes as
those that have been visited by bees, we characterized the
microbiomes of both bagged flowers and flowers that we
had observed bees visiting. We further investigated strain di-
versity in three genera of megachilid bee- and flower-
associated bacteria by sequencing nearly full-length 16S
rRNA gene sequences and reconstructing the phylogenetic
history of these bacteria.

Materials and Methods

Sample Collection

During April–June of 2013, we sampled bees, pollen provi-
sions, and flowers from two sites separated by approximately
112 km in central Texas: a privately owned fallow field strad-
dling Bexar and Guadalupe counties (29° 27′35.3″N 98° 07′
33.2″W) and the Center for Environmental Research at
Hornsby Bend (30° 14′08.6″N 97° 38′48.2″W, https://www.
austintexas.gov/cer). To collect pollen provisions and larval
bees, we placed three Logan Beemail shelters [20] at each
site and filled the shelters with 16 by 37 by 127 mm
untreated pine wood into which we drilled holes of 6.4, 6.7,
or 7.1 mm in diameter. We checked these nests weekly or
biweekly and transported completed nests (i.e., nests with
the entrance sealed by the mother bee) back to the lab. We
also netted adult bees on flowers within a 300-m radius of the
nest boxes and immediately placed the adults in sterile tubes
and then on ice for transport back to the laboratory. We col-
lected adults and nests of seven species from three genera of
megachilid bees: Lithurgus gibbosus and Lithurgus littoralis;
Megachile brevis, Megachile parallela and Megachile
policaris; and Osmia chalybea and Osmia subfasciata (see
Table S1 for metadata).

To avoid contamination with airbornemicrobes, we opened
the nests in a non-flow hood (a plastic tub turned on its side,
sanitized with a 0.03 % sodium hypochlorite solution follow-
ed by 95 % ethanol) with a flame burning in front of the hood.
We collected pollen provisions directly into tubes that had
been sterilized by exposure to UV light (254 nm/>40 μW
per square centimeter) for 10 min. To examine gut microbes
in adult and larval bees, we surface-sterilized each bee with a
1-min wash in a 0.03 % sodium hypochlorite solution follow-
ed by three washes in sterilized, nano-pure water. Using
flame-sterilized tools, we then dissected out the guts of the
bees in paraffin wax dissecting trays that had been exposed
to UV light as described above. After dissection, we immedi-
ately stored the guts at −80 °C until DNA extractions.

We used isohelix swabs (Cell Projects Ltd, UK) to sample
all flower surfaces potentially contacted by bees. We swabbed
the petals, nectaries, anthers, and stamens of each flower,
placed the swabs on ice for transport back to the laboratory,
and stored the swabs at −80 °C until we could perform DNA
extractions.We used three approaches to sample and sequence
the microbial communities on flowers. First, we targeted open
flowers from which we collected adult bees: Cirsium texanum
(N = 2), Gaillardia pulchella (N = 1), Helenium amarum
(N = 1), Helianthus annuus (N = 1), Monarda citriodora
(N = 1), Opuntia engelmannii (N = 4), and Phacelia congesta
(N = 3). Second, to survey the microbiomes of flowers that
have not been visited by bees, we covered unopened flowers
with a 0.33-mm mesh bag, allowed the flower to open, and
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then swabbed the flower (C. texanum N = 4, G. pulchella
N = 5, H. amarum N = 3, P. congesta N = 2). The mesh size
of the bags was chosen to exclude even the smallest bees
and permit gas exchange of each flower but did not ex-
clude small flower visitors such as thrips. Third, to survey
bacteria generally found in flowering meadows, we ran-
domly placed ten plots of 3-m diameter at Hornsby Bend
and used a single swab to sample every flower in each
plot. These plots were dominated by Abutilon fruticosa,
Callirhoe digitata, C. texanum, G. pulchella, H. amarum,
O. engelmannii, P. congesta, Ratibida columnifera, and
Solanum elaegnifolium.

Illumina 16S rRNA Gene Amplicon Sequencing

Molecular Research (MR DNA, Shallowater, TX) performed
DNA extractions and 16S amplicon sequencing on the
Illumina MiSeq platform, using previously published proto-
cols [13, 21]. Extractions were done using a Qiagen DNeasy
blood and tissue extraction kit and a bead-beating step of
3 min at 30 Hz with a sterile 5-mm stainless steel bead and
0.1-mm glass beads was included to lyse gram-positive bac-
teria, as in previous bee-microbiome studies and as recom-
mended in the Coloss BeeBook standard protocol [22–24].
To amplify the 16S rRNA gene, we used the 28F (5′-GAGT
T T GAT CN TGGC T CAG - 3 ′ ) a n d 5 1 9 R ( 5 ′ -
GTNTTACNGCGGCKGCTG-3′) primer pair, again follow-
ing previously published protocols and including negative
controls [13, 21]. Two separate sequencing runs were per-
formed. The first run comprised 40 samples, 8 (7 plant and 1
bee sample) of which contained a majority of reads originating
from plant plastids. A second sequencing run was therefore
performed with these 8 samples and 32 new samples where
we first ran the PCR products out on a 1 % agarose gel and
selected the larger bacterial band for gel purification and se-
quencing. For both runs, the sequencing reaction was per-
formed on an Illumina MiSeq for 250 cycles for both paired
ends of the amplicons; however, because the paired ends did
not join, we used only the forward read in the subsequent
analyses.

Bioinformatic and Statistical Analyses

To explore the alpha and beta diversity of flower and bee
microbiomes, we used standard analyses as implemented in
the QIIME pipeline [25]. We first analyzed our two datasets
together but found that bias introduced by including or ex-
cluding the gel extraction step prevented comparative analy-
ses across runs (Fig. S1). We therefore conducted diversity
analyses within each sequencing run, and we present the re-
sults of the two runs separately. For both analyses, we used
USEARCH for chimera checking [26] and Sumaclust for clus-
tering of operational taxonomic units (OTUs) at 97 %

sequence identity. Sumaclust performed consistently well in
a recent test of OTU picking software [27]. We removed
OTUs present at fewer than two reads per sequencing run.
To assign taxonomic identity to the OTUs, we used the RDP
naïve Bayesian classifier [28] with the Greengenes database
[29], along with local BLAST searches using NCBI’s 16S
microbial database (downloaded December 3, 2015). We used
this taxonomy to identify and remove plastid reads from our
data. To align our quality-filtered FASTA file, we used the
PyNAST aligner [30] along with the Greengenes database
[29]. We visually inspected the alignment in Mesquite [31]
and adjusted the alignment by eye. To create a phylogenetic
tree as input for UniFrac analyses, we used FastTree [32] as
implemented in QIIME.

After quality filtering, we calculated alpha and beta diver-
sity in QIIME and used R [33] to graph the results. We created
a heat map indicating the proportional abundance of the five
most abundant OTUs within each sequencing run using the
gplots package [34]. To visualize dissimilarity between sam-
ples based on proportional abundances of the top 10 OTUs,
we used hierarchical clustering to create a dendrogram by
which we organized the samples in our heat map. Before cal-
culating alpha and beta diversity metrics, we first subsampled
to 600 reads per sample for run 1 and 825 reads per sample for
run 2. These subsampling depths allowed us to retain 33 sam-
ples in run 1 and 40 samples in run 2, but based on rarefaction
curves (Fig. S2) and Good’s coverage [35] from our alpha
diversity analyses also captured the majority of the diversity
found in our samples (see results). For beta diversity, we used
QIIME to calculate unweighted and weighted UniFrac dis-
tances [36] and perform non-metric multidimensional scaling
(NMDS). We also calculated generalized UniFrac distances
using the GUniFrac library in R [37]. To test for differences
between sample types, host species, and sites, we used
Adonis analysis in the R Vegan package [38]. To test for
differences in plant species and bee species only, we reduced
the OTU tables to only plant or bee samples, then
recalculated UniFrac distances and performed Adonis anal-
ysis. We also performed Kruskal-Wallis rank sum tests and
Kendall rank correlation in R to analyze differences in the
relative and absolute abundance of Lactobacillus kunkeei by
sample type and correlate the qPCR and 16S amplicon data,
respectively.

Quantitative PCR of Lactobacillus kunkeei-clade Bacteria

To quantify the abundance of flower- and bee-associated bac-
teria from the Lactobacillus kunkeei-clade, we developed a
qPCR assay using the single-copy transcription elongation
factor greA gene. We used greA sequence from an unpub-
lished genome of a Lactobacillus kunkeei relative that was
originally isolated from the sweat bee Halictus ligatus [13].
To develop primers specific to Lactobacillus kunkeei-clade
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bacteria, we compared greA sequence from unpublished
Lactobacillus genomes as well as publicly available
Lactobacillus genomes. To check for specificity, we used
NCBI’s Primer-BLAST [39]. We selected a primer pair that
produces a 71 base amplicon: greAF (5 ′ -GAGA
AGCATTTACTAAGCCAAC-3′) and greAR (5′-CATA
TTGACCTTTACCACCAGAT-3′). We then cloned greA
PCR products using the TopoTA cloning kit with One Shot
Top10 component cells (Life Technologies, Carlsbad, CA),
purified the plasmids, linearized the purified plasmids using
the PstI-HF restriction enzyme (New England Biolabs,
Ipswich, MA), and quantified the plasmids on a Qubit fluo-
rometer (Life Technologies, Carlsbad, CA). We used a dilu-
tion series of these plasmids to create a standard curve for
absolute quantification of our unknown samples on a
CFX96 real-time thermal cycler (BioRad, Hercules, CA),
using 10-μL reactions comprising 5 μL of Sso-Advanced
mastermix (BioRad, Hercules, CA), 2-μL molecular grade
water, 0.5 μL each of 2 μM primer, and 2 μL of 2× diluted
DNA extraction. For absolute quantification, we ran each
sample in triplicate with triplicate dilution series reactions
for each plate. The efficiencies of these reactions ranged from
97 to 102 %. Our detection threshold was 103 copies, and we
assigned a value of 103 to samples with copy numbers below
this detection threshold, as in [9, 11].

Phylogenetic Analyses

To further explore strain diversity, we sequenced most of the
full length of the 16S rRNA gene from representative strains
of three flower- and bee-associated bacteria: a bacterium
closely related to Lactobacillus apinorum and Lactobacillus
kunkeei, a bacterium related toGilliamella apicola, and a bac-
terium related to Arsenophonus nasoniae. First, we generated
27F-1492R [40, 41] amplicons from megachilid bee samples
from this study that were dominated by one of these bacteria:
(1) for Lactobacillus OTU 0, we used Me.178.BG.P, a pollen
provision from aMegachile policaris nest; (2) for Gilliamella
apicola, we used ME.173.BG.G, the gut of a Megachile
policaris larva; (3) for Arsenophonus, we used OS.40.HB.P,
pollen from the scopa of anO. chalybea adult female.We used
standard PCRs with 35 cycles and an annealing temperature of
52 °C. We then conducted TopoTA cloning with One Shot
Top10 component cells (Life Technologies, Carlsbad, CA)
and plasmid purification. Next, we used Sanger sequencing
to obtain three to four unique DNA sequences for each bacte-
ria, sequencing from each end with 27F or 1492R,
respectively.

To verify that the Lactobacillus kunkeei relative is abun-
dant on flowers and in wild bees, we cultured this bacterium
directly from flowers and wild halictid bees found on the
campus of UC Riverside in September 2015. To isolate this
bacterium from flowers, we pipetted 50 μL of sterile

physiologic saline solution into the base and nectaries of
Indian mallow (Abutilon sp.) flowers (N = 11) that we had
observed wild halictid bees visiting (N = 12: 4 Agapostemon
sp., 4 Augochlorella pomoniella, 2 Dialictus sp., and 2
Halictus tripartitrus). To dislodge microbes, we mixed by
pipetting a standard number of times, then aspirated the phys-
iologic saline out of the flowers and transferred it to a sterile
microcentrifuge tube. We placed the tubes on ice for transport
back to the lab and then plated 20 μL of the suspension onto
de Man, Rogosae, Sharpe agar plates [42] supplemented with
20 % fructose (MRS + F). For bees, we first observed them
visiting flowers, then collected them into sterile tubes and
stored them on ice for transport back to the lab. We dissected
their guts under sterile conditions and homogenized the guts in
50-μL physiologic saline. We again plated 20 μL of the sus-
pension on MRS + F plates. To isolate pure cultures, we pick-
ed single colonies and subcultured each culture three times
before moving them into liquid MRS + F medium. We
allowed these cultures to grow at room temperature until the
culture was cloudy, then used the cells for DNA extraction.
We performed PCR and Sanger sequencing on these flower
and halictid bee isolates using the same conditions as for the
clones described above.

To place these sequences into an evolutionary context,
we created separate sequence alignments for each bacteri-
um. For the Lactobacillus phylogeny, we added the newly
obtained sequences to the alignment from McFrederick
et al. [15], along with recently described honey-bee asso-
ciated bacteria [43] and unpublished Lactobacillus se-
quences isolated from halictid and megachilid bees. For
Gilliamella and Arsenophonus, we generated new align-
ments by searching GenBank [44] for 16S rRNA gene
sequences from each genus and downloading all available
16S sequences. We also added Gilliamella sequences that
were not retrieved with our searches but were included in
Koch et al. [45] and Martinson et al. [9]. To simplify the
resulting datasets, we clustered related sequences using
CD-HIT [46] and included only one representative se-
quence per 97 % cluster. For outgroups, we used the same
outgroup sequences as in Novakova et al. [47] and Koch
et al. [45]. We then refined the alignments by eye in
Mesquite [31] and performed maximum likelihood phylo-
genetic analysis using the GTRGAMMA model of nucle-
otide evolution and 1000 bootstrap pseudoreplicates with
RAxML-HPV v 8.1.24 [48] on the CIPRES portal [49].

To further explore host associations of these bacteria, we
searched NCBI’s nucleotide database and Sequence Read
Archive (SRA) with the newly sequenced 27F-1492R 16S
rRNA gene sequences from Lactobacillus OTU 0,
Arsenophonus OTU 5, and Gilliamella OTU 3 (see results)
as queries.We recorded host associations for hits sharing 97%
or greater sequence identity when available. For the SRA, we
searched datasets generated from honey bee microbiome
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studies (PRJDB49 [24], SRA046735 [23], PRJNA225925
[11], PRJNA259199 [50], and PRJNA234448 [51]).

Data Availability

Raw Illumina sequencing data are available at the NCBI’s
SRA (accession number SRP058784). The complete OTU
tables and sample metadata are presented in Table S1.
Sanger sequencing reads of the 27F-1492R 16S rRNA gene
sequences are available on NCBI (accession numbers
KT833114–KT833126 and KX656646–KX656668).

Results

16S rRNA Gene Amplicon Data

Rarefaction analyses indicated that we were able to character-
ize most of the diversity found in our samples with as few as
600 reads per sample in run 1 and 825 reads per sample in run
2; most of the rarefaction curves leveled off or nearly leveled
off at these sequencing depths (Fig. S2). Good’s coverage
estimates averaged 0.96 (minimum 0.925 and maximum
0.995) for run 1 and 0.96 (minimum 0.94 and maximum
0.98) for run 2. Run 1 resulted in 113,991 quality-filtered
sequences while run 2 resulted in 99,793 quality-filtered se-
quences.While manyOTUswere shared across both sequenc-
ing runs, each run identified OTUs that were not found in the
other run. For example, OTU 5 (Arsenophonus) in sequencing
run 1 was missing in run 2, and vice-versa for OTU 3
(Gilliamella) from sequencing run 2 (Figs. 1 and S3;
Table S1). While we are unable to pinpoint exactly how the
different methodologies resulted in the inclusion or exclusion
of these OTUs, a likely explanation is that Arsenophonus was
excluded in the gel extraction protocol, as its 16S amplicon
was 31 bases shorter than that of the dominant OTU.

Across both sequencing runs, a Lactobaci l lus
(Lactobacillaceae) OTU (OTU 0 in both sequencing runs)
was the most abundant bacterium across all samples and dom-
inated most communities regardless of whether the communi-
ty originated from a flower or a bee (Fig. 1, Table S1). This
OTU shared 99 % sequence identity with a member of the
Lactobacillus kunkeei-clade first identified in association with
the sweat bee Augochlora pura (Table S1, [13]) and 94 %
sequence identity to Lactobacillus kunkeei NR_026404 [52].
Although abundant in many flower samples, OTU 0 dominat-
ed the microbiomes of adult bees, larval bees, and pollen pro-
vision samples in both sequencing runs (Fig. 1).

NMDS ordination of weighted, unweighted, and general-
ized UniFrac distance matrices exhibited no obvious cluster-
ing in either dataset (Fig. 2 and Fig. S4). Some patterns, how-
ever, did emerge and were verified by Adonis analysis. For
example, the microbiomes of different species differed

significantly in run 2 (weighted UniFrac distance matrix,
Adonis F = 2.18, R2 = 0.52, P = 0.006) and approached signif-
icance in run 1 (F = 1.74, R2 = 0.40, P = 0.061). Much of this
appears to be driven by differences between bee-associated
and flower-associated samples; within-flowers species did
not differ (run 1 F = 0.65, R2 = 0.19, P = 0.81 but note that
ten flower samples in run 1 were multispecies plots, run 2
F = 0.75, R2 = 0.27, P = 0.60) and within-bees species differed
significantly only in run 2 (run 1 F = 1.23, R2 = 0.29, P =
0.337; run 2 F = 2.56, R2 = 0.52, P = 0.041). Osmia and
Megachile adult samples mostly overlapped in run 1 but
showed greater dispersion in run 2. Although we included
only two Lithurgus adult samples, these clustered away from
both Osmia and Megachile adult samples. While some bee
and pollen provision samples overlapped (adults, larvae, and
pollen provisions in run 2), other bee and pollen provision
samples were dissimilar and widely dispersed in the ordina-
tion. Run 1 included only one site, but run 2 microbiomes
significantly differed by site (F = 7.65, R2 = 0.168 P =
0.002). Microbiomes from bagged flowers and bee-visited
flowers overlapped in both runs and were not significantly
different (Run 1 F = 0.75, R2 = 0.05, P = 0.55; run 2 F =
1.50, R2 = 0.08, P = 0.13).

Quantitative PCR

OTU 0 (the Lactobacillus kunkeei relative) occurred in high
absolute abundance across nearly half of the bee-associated
samples (Fig. 3). Although this bacteriumwas present in every
sample in our 16S amplicon survey, many of these same sam-
ples fell below the detection threshold in our qPCR analysis
(Fig. 3). For example, only one flower sample was above our
detection threshold. As our qPCR detection threshold was
1000 copies, following [9, 11], and the flower swab DNA
extractions had low quantities of DNA (average 1.01 ng/μL,
s.d. = 0.5), this does not suggest that OTU 0 was absent from
these samples but instead that it occurred at levels below the
detection threshold. The highest Lactobacillus kunkeei abun-
dance across all samples was found in the gut of an adult
female M. policaris bee (Me.198.Bg.G). Only one flower
sample, taken from a flower plot comprising C. texanum,
Brassica rapa, and unidentified Asteraceae flowers, had de-
tectable levels of OTU 0 via qPCR.

Our qPCRmeasures of absolute abundance were correlated
with the relative abundances of OTU 0 in our 16S-amplicon
survey (Kendall τ = 0.544, P < 0.001). We found no signifi-
cant differences, however, in the relative abundance of OTU 0
as determined in our 16S-amplicon survey (Kruskal-Wallis
X2 = 10.17, df = 5, P = 0.07), but absolute abundance as mea-
sured with our qPCR assay was significantly different among
sample types (Fig. 3, Kruskal-Wallis X2 = 23.68, df = 3,
P < 0.001).
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Phylogenetic Analyses and Proposal of Lactobacillus
micheneri sp. nov.

The Lactobacillus 16S rRNA gene phylogeny resolved OTU
0 as reciprocally monophyletic to the clade comprising
Lactobacillus apinorum and Lactobacillus kunkeei (Fig. 4,
also Fig. S5 for complete Lactobacillus phylogeny). The
OTU 0 clade included bacteria that were isolated from diverse
wild bees including Cauplicana yarrowi, Diadasia opuntiae,
Megachile spp., Osmia spp., Augochlorella pomoniella,
Agapostemon spp., Dialictus sp., Halictus tripartitus, and
Halictus ligatus. BLAST searches against NCBI’s nucleotide
database and honey bee microbiome projects on the SRA

database revealed that OTU 0 shared 97% or greater sequence
identity mainly with bacteria associated with wild bees [12,
13]. This OTU was also abundant in honey bee food
(corbicular pollen [53] and honey bee bread and corbicular
pollen [50]) but rare in the honey bee gut (8 sequences were
present in the honey bee crop [53], 1 sequence in honey bee
guts fromMassachusetts [24], and 59 sequences from a larger
survey of honey bee guts [23]). Due to monophyly of this
lineage and its association with wild bees from several fami-
lies, we propose the species epithet micheneri for OTU 0, to
honor the contributions of the late Charles D. Michener to the
field of melittology (the study of wild bees). GenBank acces-
sion KT833121 is a representative 16S rRNA gene sequence
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of a Lactobacillus micheneri strain isolated from the halictid
bee Halictus ligatus. This Lactobacillus micheneri strain
shares 97 % sequence identity with the reference sequence
of Lactobacillus apinorum, NR_126247. As the 16S rRNA
gene sequence of Lactobacillus apinorum NR_126247 [43]
shares 99 % sequence identity with the reference sequence for
Lactobacillus kunkeei, NR_026404, Lactobacillus micheneri
is clearly differentiated from these two honey-bee associated
bacteria. Lactobacillus micheneri grows in aerobic conditions
at 25–30 °C on de Man, Rogosa, Sharpe [42] plus 2–20 %
fructose agar.

The Gilliamella phylogeny was poorly resolved overall
(Fig. 5), but the OTU 3 sequences formed a monophyletic
group that included sequences isolated from a single honey
bee colony fromArizona [12]. BLASTsearches against honey
bee microbiome studies on the SRA revealed that strains with
99 to 100 % sequence identity to Gilliamella OTU 3 occur in
corbicular pollen and bee bread [50] as well as honey bee
worker guts [11, 23, 24, 51].

As in previous studies [47], the Arsenophonus phylogeny
was poorly resolved with 16S rRNA gene sequence (Fig. S6).
OTU 5 sequences, however, formed a monophyletic group
closely related to Arsenophonus nasoniae. BLAST searches
revealed that OTU 5 was found in honey bee corbicular pol-
len, bee bread, honey bee crops, and honey bee hindguts [11,
50, 53].

Discussion

Our data show that flowers harbor bacteria that are shared
across many wild megachilid bee species, and flowers

therefore may act as hubs of transmission. For example,
OTU 0 (Lactobacillus micheneri) was present in every sam-
ple, regardless of whether the sample was from flowers, pollen
provisions, or adult or larval megachilid bees. Adult bees may
both obtain and deposit microbes at flowers, so that flowers
may serve as connected hubs in a network of transmission
[54]. Our data, however, suggest that bee visitation may not
be necessary for the presence of these bacteria on flowers. We
found the same OTUs in flowers whether the flower was
bagged to exclude bees or had been visited by bees. Flowers
may therefore provide habitat for metapopulations of easily
dispersed microbes, as has been found for microbial eukary-
otes in aquatic systems [55]. Bee visitation may increase the
populations of these microbes on flowers but does not appear
to be necessary for them to be present.

Bacteria associated with flowers and adult bees also oc-
curred in larvae, suggesting that adult bees transmit these bac-
teria to their offspring via pollen provisions and the shared
nest environment. In the current work, we did not study pupae
or newly emerged adults, but previous work has shown that
these stages lack gut microbes [9, 19]. As solitary bees,
megachilids have no opportunity for social transmission be-
tween cohabiting nestmates, suggesting that environmental
transmission is important for inoculation of the newly
emerged adult gut. The ubiquity of bacteria such as
Lactobacillus micheneri across flower and bee species further
suggests that interspecies transmission is also rampant. We
lack direct experimental evidence, but our data support the
hypothesis that this transmission occurs on flowers, although
we cannot exclude other possible sources such as inoculation
of newly emerged adults in their brood cell or from leaf
surfaces.
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Several possible explanations for the presence of these
bacteria on unvisited flowers exist. Plants have long been
known to be sources of airborne bacteria [56], and one
possible explanation is that bacteria in the air or on leaf
surfaces colonize flowers as they open. The flower bags
may also have allowed bacteria to enter flowers via feces
from nearby foraging bees. Another possibility is that
these bacteria were transmitted by thrips or other flower
visitors that were small enough [57] to fit through the
mesh of our flower bags.

Other researchers have previously investigated trans-
mission of bacteria and unicellular eukaryotic pathogens
between bees on flowers. Durrer and Schmid-Hempel [58]
showed that flowers are hubs of transmission for the bum-
ble bee parasite Crithidia bombi. Graystock et al. [54]
showed that unicellular eukaryotic pathogens can be
florally transmitted between honey and bumble bees.
Anderson et al. [17] found that the honey bee crop, honey
bee hive materials, and floral nectar from four plant spe-
cies can harbor the same bacterial types. Flower visitation

by carpenter bees, but not honey or bumble bees, in-
c reased microbia l abundance on f lowers [59] .
Aizenberg-Gershtein et al. [60] compared bagged and
open flower microbiomes to the exoskeletal microbiomes
of honey bees and found that two open-flower samples
clustered with one bee sample while one open-flower
sample clustered with three bagged-flower samples, sug-
gesting that honey bee visitation may change the floral
microbiome.

Our study differs from these previous studies in several
ways. First, we investigated the microbiome of multiple
wild flower and megachilid bee species at two distant
sites. Second, while recent microbiome analyses com-
pared flower and surface (exoskeletal) microbiomes of
bees [59, 60], we compare flower microbiomes to
microbiomes from pollen provisions and the guts of larval
and adult bees, and we show that the same OTUs are
found in flowers and bee-associated samples. We also
provide the first evidence that Lactobacillus micheneri,
Gilliamella, and Arsenophonus occur on flowers.
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Our qPCR data show that Lactobacillus micheneri can
reach high abundance in the adult gut, the larval gut, and
pollen provisions. The resources sustaining bacterial
growth in flowers are found in greater abundance in the
pollen provisions and guts of wild megachilid bees than in
flowers; for example, Megachile rotundata visits hun-
dreds to thousands of flowers on multiple foraging trips
to provision one brood cell [61]. The finding that
Lactobacillus micheneri occurs at lower absolute abun-
dance in flowers may simply reflect the lower amount of
starting material in the flower samples compared to the
bee and pollen provision samples. The bee gut, however,
is a very different environment than flowers, but one that
Lactobacil lus micheneri nevertheless thrives in.
Lactobacillus micheneri may therefore be adapted to the
bee gut, but further work is needed to test this hypothesis.

Lactobacillus, Gilliamella, and Arsenophonus Diversity
in the Pollination Landscape

Our phylogenetic analyses revealed and/or resolved novel
lineages of flower- and bee-associated bacteria. For exam-
ple, Lactobacillus micheneri was reciprocally monophy-
letic to the honey bee-associated clade that includes
Lactobacillus apinorum and Lactobacillus kunkeei. We
previously reported Lactobacillus micheneri associated
with the sweat bee Augochlora pura [13] but were unable
to resolve its phylogenetic placement with the shorter 16S
rRNA gene sequence used in that previous analysis.
BLAST searches further showed that Lactobacillus
micheneri is found on pollen entering honey bee colonies
and in honey bee bread but is rarely found in the honey
bee gut. Why diverse wild bee guts harbor Lactobacillus
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micheneri whereas honey bee guts do not remains an open
question. The reciprocal question, i.e., why Lactobacillus
kunkeei occurs in honey bee samples but not in wild bee sam-
ples, is equally compelling. Our data agree with the previously
posited hypothesis that strains of Lactobacillus kunkeei are
adapted to the honey bee niche while other closely related
strains may be adapted to the flower niche [18].

Gilliamella apicola is part of the honey bee core hindgut
microbiome and is thought to be specific to the honey bee gut
[62, 63].We previously reported a close relative ofGilliamella
apicola associated with sweat bees in the genus Megalopta
[19], and here, we found a bacterial lineage in many of our
flower, pollen provision, and bee gut samples that is 99 %
identical in 16S rRNA gene sequence to a Gilliamella apicola
strain from honey bees [12, 23]. Our phylogenetic analysis
returned this lineage as a monophyletic group that is distinct
from the majority of the honey bee- and bumble bee-
associated Gilliamella apicola lineages. While previously
found in honey bees, this Gilliamella apicola strain was de-
tected in only one of four honey bee colonies from one apiary
and appears to be a minor constituent of the honey bee
microbiome [12, 23]. Additionally, this flower- and bee-
associated Gilliamella strain shares 96 % (27F 250 base pair
Illumina fragment) or 98 % (27F-1492R fragment) sequence
identity to the Gilliamella apicola type strain [64]. This
flower- and bee-associated strain may therefore represent a
distinct lineage of Gilliamella that can form broad associa-
tions with bees (including sporadic association with honey
bees) and flowers. Further studies of this bacterium are needed
to determine whether Gilliamella found in flowers are active
and can survive and replicate outside of the bee gut.

Arsenophonus has been previously reported from solitary
and wild bees [14, 65] and honey bees [51, 60]. Here, we
additionally report Arsenophonus from flowers. Our phyloge-
netic analysis returned these sequences as monophyletic, but
embedded within a larger clade containing endosymbionts of
Nasonia, ticks, whiteflies, and aphids. The occurrence of this
Arsenophonus lineage on flowers suggests that it may not be
an obligate endosymbiont but can be environmentally trans-
mitted. How this bacterium is able to persist outside insect
hosts and what role it plays in plant and/or bee health merits
further investigation.

Conclusions and Future Directions

Our data suggest that flowers may act as hubs of transmission
for bacteria that are found associated with multiple bee

species. For example, we found a Lactobacillus OTU in all
samples but in the highest relative and absolute abundances in
adult and larval megachilid bee guts and pollen provisions.
Future studies should therefore address the hypothesis that this
bacterium is best adapted to the bee niche. Phylogenetic anal-
yses of nearly full-length 16S rRNA gene sequences indicated
that this Lactobacillus OTU is monophyletic, and we propose
the name Lactobacillus micheneri sp. nov. for this bacterium.

Many unanswered questions remain regarding the
microbiomes associated with wild and solitary bees.We found
several abundant bacteria in bagged flowers, including
Lactobacillus micheneri,Gilliamella, and Arsenophonus, sug-
gesting that these bacteria may colonize flowers via the air,
leaf surfaces, or smaller insect vectors such as thrips.
Experiments controlling for possible environmental sources
of flower inoculation could determine from which of these
sources flowers recruit microbes into their microbiomes.
Transcriptomic studies of bacteria in flowers, pollen provi-
sions, and bee guts could reveal how active these bacteria
are in their various niches, as well as the degree to which these
bacteria are adapted to these varied environments. The main
outstanding questions, however, are the functional roles that
these bacteria play in bee fitness. Fitness experiments com-
bined with metagenomic sequencing approaches will help un-
ravel the effects these abundant bacteria have on their hosts.
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